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Kirkwood's instability in the theory of fluid-solid transitions is proved to 
be impossible. Fluctuation of the one-particle distribution function in the 
first equation of the BGY hierarchy is investigated beyond Kunkin and 
Frisch's treatment. The second equation of the BGY hierarchy is utilized to 
eliminate the three-particle distribution function left in the Kunkin- 
Frisch result. The final expression for the first-order fluctuation of the one- 
particle distribution function under the presence of an external field is 
written in a form including only the pair correlation function and agrees 
identically with the one obtained from the direct expansion of the one- 
particle distribution function in terms of the external field. 
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1. I N T R O D U C T I O N  

The fluid-solid t ransi t ion in a classical system of hard-core particles is 
one of the impor tan t  problems in statistical mechanics.  In  t951, with use of 
the linearized B o r n - G r e e n - Y v o n  (BGY) integral equat ion,  m it was predicted 

by Ki rkwood  C2~ that  in some region of the dens i ty- tempera ture  plane the 

one-particle dis t r ibut ion funct ion is uns table  with respect to small per turba-  

tions. An  interesting aspect of K i rkwood ' s  theory is that  the instabili ty 
occurs even when the pair  correlat ion func t ion  has no singularity. It  involves, 
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however, some unreasonable results in the light of other relevant studies. ~3,~) 
For  example, his calculation yields an instability even in the hard-rod 
system, <a~ which contradicts van Hove 's  rigorous result <4) that there is no 
phase transition in the hard-rod system. 

The above discrepancy is, as has been pointed out by some authors, ~3,5~ 
attributed to Kirkwood's  treatment of  the fluctuations of  the one-particle 
distribution function and the pair correlation function as independent of  
each other. Kunkin and Frisch ~5~ assumed that the fluctuations of  the pair 
correlation function as well as of  the one-particle distribution function are 
induced by an  external field and calculated the fluctuations to the first order 
in the external field. Substituting the results into the BGY equation and re- 
taining only the first-order terms, they showed that the kernel which leads to 
Kirkwood's  instability is canceled by a term arising from the fluctuation of 
the pair correlation funct ion? 

In Kunkin and Frisch's result, however, the fluctuation of  the one- 
particle distribution function is expressed in terms of an equation including 
the three-particle distribution function and another type of instability is not 
entirely ruled out. 

In this paper, we will demonstrate in a rigorous manner that the three- 
particle distribution function is eliminated and that the first-order fluctuation 
of the one-particle distribution function obtained f rom the linearized BGY 
equation is described only in terms of the pair correlation function. In the 
course of  the calculation the second equation of the BGY hierarchy is in- 
voked and full use is made of the functional derivative technique. It follows 
that the one-particle distribution function has no instability unless the pair 
correlation function has a singularity. 

2. F O R M U L A T I O N  

We start with the first equation of the BGY hierarchy (1~ 

V~ In nl(1) + /~ V1U(1) = -pf [VlV(I1 - 21)]nl(2)g2(1, 2) d2 (1) 

where/3 is the inverse temperature, n~ the one-particle distribution function, 
U the external potential, g2 the pair correlation function, and V the pairwise 
interaction with spherical symmetry. The abbreviated notation i is used for 
the coordinate r~ of the particle i. 

In a uniform fluid phase, the one-particle distribution function nl is 
constant and is equal to the density n. Suppose an infinitesimal external field 
eu(1) is applied to the system and nl is modified as nl(1) = n(1 + e~ (1)). We 

3 It is also shown in Ref. 5 that in some cases the external perturbation often leads to 
a mechanically more stable system. 
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expand both sides of  (1) in e, employing a slightly different method from 
Kunkin  and Frisch's, and retain the terms in the first order in E. Noting that  
the pair correlation function g2 is a functional of  nz, (~ we obtain 

V~(1)  + /3 V~U(1) = - / 3 f  [V~V(I1 - 2l)]r(1, 2, 3)nff(3) d3 d2 (2) 

with 

F(1, 2, 3) = 8[n~(2)g2(1, 2)] v=o f ~[n~(2)g2(1, 2)] v=o ~ e - e U ( ~  u=o 
~n1(3) = 8e -By(4) 8n1(3) d4 (3) 

In order to evaluate F, it is convenient to utilize the following identities57) 
The first is the functional derivative of  the Ursell function with respect to 
e-BV<l).  

The s-particle Ursell function ~ is defined by the recursion formula 

3{ [exp =~1/3U(i)]o~(1, 2,..., s)} 

~{exp[-/3U(s + 1)]} 

r s+1 ] 
= [exp __~1 / 3 U ( i )  ~ + ~ ( 1 , 2 , . . . , s , s  + I) (4) 

for s~> 1 and 

8 1 n E  
~ ( 1 )  -- nz(1) = 8e_~V(1----------- ) e -B~(! )  

where E is the grand partition function. They can be related to the ordinary 
correlation functions as 

~ ( 1 ,  2) = n~(1)n~(2 ) [g2(1 ,  2) - 1] (5) 

~ ( 1 ,  2, 3) = n l ( 1 ) n l ( 2 ) n l ( 3 ) [ g 8 ( 1 ,  2, 3) - g2(1, 2) - g2(2, 3) - g2(1, 3) + 21 

(6) 

etc. For  later use, we write down the first two equations of (4): 

8o~(1) 
.3e_eV<2 ~ - eeV(2>[-Y2(1, 2) + 8(1 - 2)~(1)]  (7) 

3o~(1, 2) 
3e_~Cr(3) - e~V(a){o~(1, 2, 3) + [5(1 - 3) + 8(2 - 3)]o~(1, 2)} (8) 

where 8(1 - 2) is the Dirac delta function. The second useful identity is 

8(-/3U(1)) 1 2) C2(1, 2) (9) 
8n1(2) - n1(2) 5(1 - - 
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where C2 is the direct correlation function which is related to g2 as 

- 1 = C2(1, 2) + f C2(1, 3)nl(3)[g2(3, 2) - 1] d3 (10) g2(1, 2) 

Here we substitute (7)-(9) into (3) and replace the Ursell functions by the 
ordinary correlation functions with the aid of (5) and (6). Then we find 

r(1, 2, 3) = 3(2 - 3)g~(]l - 2[) - ng~(I 1 - 21)Cf(12 - 3]) 

n g , ~  - n2 f g3OO,2,4)c2o(14- 3])d4 (11) + 

where g~ is the unperturbed radial distribution function. The superscript 
zero is also used to indicate the quantity in the unperturbed uniform fluid. 
Note that the quantities with the superscript zero have translational symmetry. 
In writing the result (11), we have discarded beforehand those terms which 
will vanish on integration on the rhs of (2) due to inversion symmetry. 

After inserting (11) in (2), we take the Fourier transform of (2) to obtain 

~(k) + flU(k) = ~(k)[G(k) - nG(k)C(k) + nT(k) - n2T(k)~(k)] 

= q~(k) G(k) + nT(k) 
1 + nh(k)  (12) 

where we have used the Fourier transforms defined by 

~(k) = f ~b(r) exp(ik.r) dr (13) 

U(k) = f U(r) exp(ik-r) dr (14) 

/~(k) = f [gz(r) - 1] exp(ik-r) dr (15) 

G(k) - infl ( k . r  dV(r) 
k 2 3 r dr gt(r) exp(ik.r) dr (16) 

f ]~(k) (17) C(k) -- Cf(r)  exp(ik.r) dr = 1 + n/~(k) 

and 

T(k) - infl ( k.R~2 dV(Ra2) o, R k 2 .] R~2 ~ ga t ~a, R~a) exp(ik.R~3) dR~ dR2 

_ infi ( k.(X - Y) dV(R) n= ga~ Y) exp(ik.X) dX dY 
k 2 J I-X 25 -Y-] dR ix-YI (18) 

It is important to note that the three-particle distribution function can 
be eliminated from T(k). To show this, we employ the second equation of the 
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BGY hierarchy for the uniform fluid, (1) 

Vlgz([1 - 2[) + flgz(]l - 21)V~V([1 - 21) 

= - n ~ . f  [V~V([1 - 31)]g3~ 2, 3) d3 

= - n f l f  [V1V([1 - 3[)]ga~ - 2, 3 - 2) d3 (19) 

The Fourier transform of (19) yields an important result: 

T(k) = /~(k) - (1/n)G(k) (20) 

On substituting (20) into (13), we finally obtain 

qg(k) = -/3U(k)[1 + n/~(k)] (21) 

The same result can be derived by expanding n~(1) directly with respect to 
~u(1): 

f ~nl(1) ~:0 enq~(1) = 3e_,V(2 ) [-fleU(2)] d2 (22) 

With the aid of (5) and (7), it can be easily shown that the Fourier transform 
of (22) agrees with (21). It implies that no instability can occur in the one- 
particle distribution function in the uniform fluid phase unless h(k) has 
a singularity. 
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